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Abstract

In the localization problem, we attempt to find the posi-
tion and rotation of the user with respect to some reference
frame. Classical techniques like GPS are well suited to out-
door localization, where approximate position and missing
height is enough to provide high quality localization and
navigation capabilities. However, the intricacies of indoor
environments require more accurate estimates.

In this work, we explore a method to localize the user in-
side a known indoor environment using camera data, using
off the shelf localization algorithms and models. We fur-
ther design an AR app for the Magic Leap 2 headset that
automatically localizes the user, allows him to preview the
current position, and supports in-world navigation to any
other place in the environment.

1. Introduction

In this work, we design an AR application that is capable of
localizing the user in a known environment based on the AR
headset camera data, then previews the estimated position
and allows navigating to other places in the world.

Our application follows a client-server architecture,
where the client is the AR headset responsible for showing
the world overlay and navigation, while the server runs the
localization algorithm, capable of returning the estimated
world-space pose given a single camera image.

We structure this report as follows - Section 2 shows the
entire architecture of the app, section 3 describes how we
use the Hierarchical Localization algorithm to perform lo-
calization on the server side, section 4 describes the features
of the Unity application running on the headset, and finally,
section 5 describes the results of the user study performed
to analyze the typical user experience.

2. Architecture

The architecture of the application is illustrated in Figure 1.
The application first queries the headset for the camera data,
which is then encoded as a Base64 string. The result, along
with the local pose of the headset, is then converted into a
JSON representation and sent to the server running the lo-
calization algorithm (Section 3). Depending on whether we
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are running in the automatic or manual localization modes
(as described in section 4.2), the server returns either the
pose in world space or the required reposition for the head-

set.
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Figure 1. Control flow of the application’s algorithm
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Since the quality of the prediction is highly correlated
with the sharpness of the image, we schedule the server
queries at times when the headset is moving relatively
slowly. We only send the next request after the current one
has finished processing, or after a timeout duration of 10
seconds.

3. Localization

For indoor localization, we use the Hierarchical Localiza-
tion algorithm [9], subsequently referred to as HLOC, an
existing algorithm well suited for both indoor and outdoor
environments. Using this algorithm was recommended as
part of the initial project description, and we did not ex-
plore other methods for two reasons: the main focus of
our project was to create a successful implementation, and
HLOC supported several keypoint finding and matching al-
gorithms that we could test and choose from.

To localize the user, HLOC requires an existing database
of images, their poses in world space, and their camera in-
trinsics. For this, we utilize the LaMAR [11] dataset, an ex-
tensive collection of multi-sensor data streams captured by
AR devices and laser scanners over several sessions, filling
all the requirements imposed by HLoc. To our knowledge,
this was the best available dataset of image and localiza-



tion data within the ETH HG building where our final demo
would take place.

In the following sections we describe how LaMAR and
HLOC work and our modifications and contributions to cre-
ate a working indoor localization application.

3.1. LaMAR Dataset

The LaMAR [11] dataset contains multi-sensor data
streams captured by HoloLens, iPhone, and NavVis laser
scanner devices. Initially, we tried to use the NavVis laser
scan data, as we thought it would be the most accurate,
but we realized that it didn’t have a way to access the 3D
point or depth information that was required by HLOC. Ul-
timately, all we could use was the raw image and depthmap
data from the HoloLens and iPhone devices. The HoloLens
data was more comprehensive, but in worse quality - the
main issues were with the lower resolution and the a slightly
different pose of the depth cameras relative to the main im-
age camera, requiring camera transformations, cropping,
and interpolation to use. Augmenting with iPhone data,
which had image data at 20x the resolution, produced better
results.

Another challenge of the data was the irregularity. The
HoloLens had only one depth image for every 20 camera
images, and even that one was not taken at the exact same
time. Another part we required that was often missing in
LaMAR was a known global pose for every camera image,
which was only available for a small subset of images. Ul-
timately, we decided to only use the camera image data that
had an associated global trajectory, and for each camera im-
age use the temporally closest depth image. For our use
case, precise position and orientation information was more
important than precise depth information, and we felt that
attempting to interpolate position and orientation informa-
tion was error-prone and hard to implement.

The HoloLens captured data from four different image
cameras, but we only used one, the front left, because it had
the most spatial overlap with the depth camera. We did not
try using the data from other cameras.

Additionally, the LaMAR dataset had a lot of data cap-
tured around the exterior of the building, which we were not
interested in for the task of indoor localization. We decided
to filter these out to reduce processing time and potential
false positive matches. To do this, we converted the poses
of all images into the global space and filtered out the im-
ages outside the manually set building bounds.

We implemented our own preprocessing solution that
created the final database after all of the above-mentioned
filtering steps, including all of the images and the relevant
metadata. The final dataset contains about 10,000 images.

3.2. Hierarchical Localization

Hierarchical Localization is an algorithm that attempts to
localize a query image in a given environment, using a
database of existing reference images and their poses. It
does this in three steps - first, it extracts keypoints in the
query, then it tries to find images with similar keypoints in
the database, and finally, it attempts to reconstruct the best
3D pose that would map the keypoints in one image to the
other. Finally, we find the K best-matching images. Since
we know their absolute pose in world space and the relative
pose of the query image, we can then combine the trans-
forms to obtain the estimated pose of the query in world
space, which is required by our application.

We describe the three main steps and our contributions
to each in the sections below.

3.2.1. Keypoint Extraction

First, all the database reference images are preprocessed by
extracting two different types of feature points, one for fast
image matching and one for more precise matching. We did
this offline using the reduced image dataset as described in
subsection 3.1 and stored the results on the server. During
localization, the same types of feature points are extracted
for each query image sent to HLOC.

We use NetVLAD [1] feature points for the fast image
matching and SuperPoint [3] features for the more precise
image matching. To determine which feature points per-
form best for our use case, we manually captured a query
dataset of images from the hallway where our demo would
take place and tested several different feature algorithms.
The demo hallway was a challenging environment, as there
were not many salient and unique areas, and instead the pat-
terns of the doorways and floors were almost identical to
several other areas in the ETH HG building that our ref-
erence dataset included. Empirically, we found that some
newer algorithms such as LightGlue [8] produced more
false positive matches. NetVLAD and SuperPoint worked
best for our dataset, the feature extraction speed was not a
consideration as we could preprocess the reference database
of images.

3.2.2. Matching

In the matching step, we begin by using NetVLAD [1] for
fast image matching, which returns the top N most similar
images in the reference database to the query image. Then,
for each of these images, we use SuperGlue [10] to match
the previously extracted SuperPoint [3] feature descriptors.

In our tests, we found that NetVLAD returned very ac-
curate matches for at least the top 3 images. However, we
found that these images sometimes did not work for the next
step of 3D pose estimation. We describe how we handled
this in section 3.2.3. We observed that we can obtain better
final results when using 40 images from NetVLAD, while



still keeping acceptable performance levels at about 7 sec-
onds per query, as opposed to 4.5 seconds with only the top
5 NetVLAD images.

3.2.3. 3D Pose Estimation

Getting an accurate 3D pose estimate was the most difficult
part of our HLOC implementation.

For each of the reference images returned from
NetVLAD, we load, rescale and interpolate the 3D points
from corresponding depth images before transforming them
to global coordinates. This requires some manual con-
figuration to account for depth sensor differences between
HoloLens and iPhone data. Notably, the HoloLens depth
sensor is not in the same place as the cameras, requiring
camera transformations as well as cropping and shifting.

We send the points from the top K images with the
highest number of feature points with valid depth points
to COLMAP [12] [13], which uses RANSAC to estimate
the camera position and orientation. Although RANSAC
should be robust to outliers, we found that sending 5 or
more images to COLMAP generally gave a worse predic-
tion than fewer images, as can be seen in table 1. This
seemed to be because some images would have one or sev-
eral points that would match incorrectly and induce an er-
ror in the final estimates of up to 20 meters. Changing the
RANSAC error threshold did not mitigate this issue.

We also found that the top 3 images returned by
NetVLAD, despite being correct matches and visually ex-
tremely similar to the query image, were not always the best
images to send to COLMAP. We hypothesize that this is be-
cause of inaccurate or missing depth data, though it could
also be from poor SuperPoint feature matches, and we did
not have time to do a full analysis. We instead chose to
query NetVLAD for more than 3 images. As seen in ta-
ble 1, our test set analysis showed that processing the top
5 NetVLAD matches but only sending the top 3 with the
highest number of SuperPoint feature matches with valid
depth points to COLMAP produced the best 3D pose esti-
mation results. However, empirically, sending more images
seemed to work even better, and for our final application
we actually queried NetVLAD for 40 matches. A deeper
discussion of this is in section 3.3.

Finally, we take the result of COLMAP, and find the rigid
transform between the local camera origin and the global
prediction. Then we post-process this transformation by
first rejecting it if the total number of inliers in the top 2
images is less than 40 and then doing simple clustering of
all accepted local to global translations found so far and up-
date the transform to the current transform only if it is in
the largest cluster. As future work, we would need to do
some proper smoothing on these clusters and better outlier
detection so the prediction doesn’t jump around as much.

Netvlad N | Pose estim. k | Time (s) | | Distance |

40 1 7.50 8.47
40 3 7.63 6.85
40 40 7.96 7.16
5 1 3.71 4.29
5 3 3.73 4.42
5 5 3.75 4.59

3 1 3.43 4.51

3 3 3.48 4.81

1 1 3.17 10.06

Table 1. Localization Experiment Results. Last column shows the
mean Euclidean distance to the ground truth.

3.3. Localization Results

For the validation of our localization method we held out
one entire data collection session from the image retrieval
database. We predicted the location and computed the aver-
age prediction time and prediction accuracy, i.e., the mean
Euclidean distance from the ground truth, of 50 images
from that session. The results are in table 1. These re-
sults indicate that the best method would be to retrieve 5
images using NetVLAD and then use the top 3 images in the
COLMAP pose estimation. However, we empirically found
that retrieving the top 40 images worked better in real-world
scenarios with data from the actual AR device. We hypothe-
size that this might be because our real world query images
are more dissimilar to the retrieval image dataset than the
test set is, due to camera differences or the fact that the re-
trieval image dataset was taken a few years in the past, and
that therefore retrieving more images from NetVLAD in-
creased the chance of some having more keypoint matches.

4. Unity Application

To preview the current location of the user and enable nav-
igation capabilities, we use the Unity Game Engine [5] to
develop an AR application for the Magic Leap 2 [7] head-
set.

This section is dedicated to describing all the features
available in our application, particularly, we first describe
how the world is rendered in subsection 4.1, second, we
discuss the two options for aligning the world in subsection
4.2, and third, we discuss the 2D map and navigation capa-
bilities in subsection 4.3.

4.1. World Rendering

To render the world, we elegantly combine several data
sources from the LaMAR [11] dataset. We show a subset of
the captured lidar point clouds as well as trajectories taken
by the researchers capturing our dataset to preview where
localization data is available. We also process the data to
obtain a 3D model of the entire environment, this is then



used to perform correct depth testing, to prevent us from
rendering trajectories or points occluded by walls or objects
in the real world.

4.1.1. Point clouds

We take all the point clouds from the lidar sessions in
dataset, convert the positions of the points into global world
coordinates and subsample them (taking each point with
uniform probability) to obtain a set of 800 thousand points,
including their normals and colors.

We render the points as circles in the game engine, and
we implement our own shader for animating them that
pulses the points in a wave originating from the position of
the user, giving him a sense of the distance to all points in
the scene. To ensure points won’t be rendered inside walls
and culled during depth testing, we move them along their
normals. The color of the points is set to match the real
world. A preview of the final look is shown in Figure 4.

To improve performance, we split the points into several
disjoint axis-aligned bounding boxes based on their posi-
tion, ignore the ones too far away from the camera (> 30m),
and fade them in as the player moves closer. Preview is
shown in Figure 7.

4.1.2. Trajectory rendering

To preview where localization data is available, we render
the paths taken by the researchers collecting our dataset. To
minimize visual clutter we only show the sessions for col-
lecting Lidar data. We take the trajectory points from the
dataset and apply a cubic bezier curve interpolation to ob-
tain a smoothed version. We render the resulting line as a
mesh in Unity, with a custom shader on top that occasion-
ally shows footsteps moving forward on each trajectory and
pulses alongside the point clouds. A preview is shown in
Figure 5.

4.1.3. The environment overlay

To guarantee that we will not be able to see points through
walls in our AR overlay, we render 3D mesh of our environ-
ment into the depth map before the point clouds, allowing
us to hide the points and trajectories occluded by building
geometry.

Since we failed to load and process the mesh provided by
LaMAR due to the high memory requirements, we instead
construct our own version. We use the point clouds to gen-
erate a voxel grid representation of the entire scene, where
each cell stores the number of points inside it. We then use
Blender [6] to convert the density voxel grid representation
into a lower resolution 3D mesh, and use the available re-
topology tools to simplify it further. We show the obtained
mesh in Figure 8.

4.2. Aligning The World

Aligning the world refers to the process of figuring out
the relative transformation needed to map from the headset
space into the absolute environment space. This transform
can be then used to set the position and rotation of the head-
set inside our application to match the overlay to the real
world.

Our application supports two alignment modes. First, a
manual one where we only refine an initial estimate, allow-
ing us to preview the world overlay even without relying
on the localization algorithm. Second, an automatic one,
where we query the server using the current camera data to
obtain an estimate for the current camera transformation.

4.2.1. Manual Alignment

When a button is held on the controller, we ignore the move-
ment of the user, ensuring that the view of the world is kept
static - contrary to the normal AR experience where the user
is able to move throughout the world by changing the posi-
tion of the headset.

This allows for an intuitive way to change the relative
position of the headset and world origins, letting the user
to move the overlay to align it with the current world bet-
ter. However, a limitation is that for each change in align-
ment, the user has to travel the equivalent distance in the real
world, making this method unsuitable for large changes in
position.

4.2.2. Automatic Alignment

To perform automatic alignment, we take an image using
the main camera of the headset and send it to the server,
which responds with the estimated pose of the image. By
then taking the estimate and the original headset pose at
the time of taking the image, we can solve for the relative
transform of the headset to world coordinates and apply it
to move the camera.

Since this method is quite prone to noise, particularly
when exposed to many similarly-looking locations through-
out the dataset, we only show the estimates on the map, de-
scribed in the next section. The stability and shortcomings
of this system are evaluated in more detail in section 3.

4.3. The Location Map and Navigation
4.3.1. The Minimap

To allow the user to preview his position, view automatic lo-
calization estimates, and allow navigation capabilities, we
implement a 2D map as shown in Figure 6. The map ap-
pears when a button on the controller is pressed, and by
pointing to a different point in the environment and con-
firming, a path can be planned to the targeted location. The
trajectory is then shown both on the map and in world space,
and can be followed.



4.3.2. Navigation

We allow the user to navigate from his position to any po-
sition selected on the minimap. To create the navigation
graph, we use the vertices and edges from the LaMAR tra-
jectories, then add edges between each vertex and the clos-
est vertex of every possible other trajectory, if the distance
is below a given threshold. We empirically find that this
gives us a reasonably good and strongly connected naviga-
tion graph while preventing us from introducing quadrati-
cally many edges, hindering performance.

To plan the path, we first find the closest point to the
user and to the target in the graph. Then we use a standard
implementation of the A* algorithm [4] to find the shortest
path between the two.

4.4. Windows Demo

To allow anybody to explore our visualization, without the
alignment part, we also release a 3D demo available on
Windows. A preview is shown in Figure 9, and a build is
available for download on Google Drive.

5. User Study

To get a good idea of the typical user experience, allowing
us to further improve our application, we conducted a user
study. In particular, we wanted to find out how intuitive
the interaction and visualization of our maps and trajecto-
ries is to the user, as well as whether the usefulness and
the required localization accuracy would be deemed to be
acceptable.

We asked 9 students who attended the demo day of the
Mixed Reality course and tested our application for feed-
back. We used the system usability scale [2] [15] to assess
the usability of our system (Figure 2). After evaluating all
responses, we obtained a mean of 74 points, giving our ap-
plication a rating of usable, but with room for improvement.

We also asked the participants to rate how much they
agreed with these statements on a five point Likert scale [14]
and compiled the results. Our questions were as follows:

* | understood what the "Where Am I”” app was supposed
to do.

* I was able to get aligned in the world.

* It was easy to get aligned in the world.

* | was able to understand where I was in the building by
using the minimap.

* My position on the minimap often ”jumped around”.

» I was able to successfully navigate to a target.

* I enjoyed the navigation experience.

90% percent of users understood what the app was sup-
posed to do and enjoyed the navigation experience, and 80%
were able to successfully navigate to a target. We found
this quite promising, as we thought this was a great way
to showcase why somebody would actually want to use the

app.
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Figure 2. System Usability Scale

It was easy to get aligned in the world. My position on the minimap often ‘jumped around".

1 2 3 4 . 2 3 4
1 was able to get aligned in the world. 1 enjoyed the navigation experience.

Figure 3. Responses from the user study

The main negative responses were regarding the local-
ization, see Figure 3, which in some cases could be highly
inaccurate. This is partly because we haven’t been able to
devise a good enough heuristic for whether an image is use-
ful or not before predicting, so sometimes it would take long
before getting an accurate guess.

This would be a good area to conduct future work, as se-
lecting better images would prevent us from spending valu-
able time on predicting the location for low quality samples.
In particular, looking at the tilt or movement of the headset
or the number of salient features might give us better es-
timates. We would also like to look further into robustly
combining several subsequent predictions to obtain a better
and smoothed estimate of the current position less prone to
errors induced by outliers.


https://drive.google.com/file/d/1qFyhm7vSsIlRSseKalWQ6rtA28Iu_okf/view

6. Figures

Figure 4. Point Rendering Preview. We show the surroundings of
the fountain right after entering ETH.

Figure 7. The Point Clipping Preview. We show a similar scene
to 5 - however, as we have moved closer to the entrance, points on
the building are now fully present and not only fading in.

Figure 5. Trajectory Rendering Preview. We show the trajectories
in the front of the HG building. Pink and orange trajectories de-
pict the paths taken when collecting several runs of the LaMAR
dataset, white trajectory is the current planned navigation path.

Figure 6. The Minimap. The red pawn is the current location of
the user, the blue flag is the localization target. Red trajectory is
the currently planned path, shown in white in 5, the trajectory cur-
rently pointed to by the user and awaiting confirmation is shown
in brown.

Figure 8. The Building Model, the spot in the bottom right is the
Polyterasse. Some parts in the front are missing, however, the most
important parts - walls on the inside of the building responsible for
most of the occlusions - are present.
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Figure 9. The Windows Demo. We also made an application run-
ning on windows only for the demo day. As an additional feature,
it has an always-present minimap in the top right (this was ex-
cluded in the AR version as it was unpleasant to have it blocking
the view).
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